Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

Android: Staff’s Choice
n-Puzzle

due by noon ET on Thu 3/10

Ingredients.

. Activity
. Android SDK

° Bitmap
b Intent
. Java
Help.

Help is available throughout the week at http://help.cs76.net/! We'll do our best to respond
within 24 hours. Be sure, though, to take advantage of lectures and sections as well as videos thereof!

lofl

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

Academic Honesty

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed by some project. Viewing, requesting, or copying another individual’s
work or lifting material from a book, magazine, website, or other source—even in part—and presenting
it as your own constitutes academic dishonesty, as does showing or giving your work, even in part, to
another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to this
course that you have submitted or will submit to another. Nor may you provide or make available your
or other students’ solutions to projects to individuals who take or may take this course (or CSCI S-76) in
the future.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. You may also turn to the Web
for instruction beyond the course’s lectures and sections, for references, and for solutions to technical
difficulties, but not for outright solutions to problems on projects. However, failure to cite (as with
comments) the origin of any code or technique that you do discover outside of the course’s lectures and
sections (even while respecting these constraints) and then integrate into your own work may be
considered academic dishonesty.

If in doubt as to the appropriateness of some discussion or action, contact the staff.

All forms of academic dishonesty are dealt with harshly.

Grades.

Your work on this project will be evaluated along four primary axes.

Correctness. To what extent is your code consistent with our specifications and free of bugs?
Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?

Scope. To what extent does your code implement the features required by our specification?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

20f2

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

The n-puzzle.

The n-puzzle is a game known by a variety of names: Game of Fifteen, 8-puzzle, 15-puzzle, Mystic
Square, and others. All the names refer to the same game, however: a two-dimensional puzzle with one
empty space into which some numbered tiles can slide horizontally or vertically to occupy. The goal is to
arrange the board from smallest to largest, as shown in the example below.’

13 (|14 || 15

A variation of this game is to replace the numbers on the tiles with images cropped from a larger one.
The puzzle in a solved state would then appear to be the original image with the corner missing, like the
below.

oo Es

s E:JH;_,

Shuffled Solved

In any case, a valid move is performed when a player slides a tile either horizontally or vertically into the
empty space. Any other move, such as a diagonal shift or swapping the place of two arbitrary tiles, is
invalid.

! Image from: http://en.wikipedia.org/wiki/File:15-puzzle.svg

30f3

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

Simply pseudorandomly placing each tile does not guarantee the creation of a shuffled board that is
solvable with valid moves. In fact, half of the configurations are found to be impossible! > To simplify the
matters of shuffling, it’s perhaps easiest to order the tiles in reverse. However, when n, the number of
tiles on the board, is odd (don’t forget one tile is missing!) then you should swap tiles 1 and 2. Put
another way, if the number of rows and columns is even than tiles 1 and 2 should be swapped. Below
are sample boards that are shuffled yet solvable.

24 1 2312221] 20

15)14 | 13 | 12
8 7 6 19118 117] 16 § 15
11 | 10 9 8
5 4 3 14] 13§12 § 11 § 10

71 6] 5 1] 4
21- 91 8] 701 6] 5
T
4321-

8-puzzle 15-puzzle 24-puzzle

Of course, the above applies to the image variant of the n-puzzle game, assuming you treat each image
tile as a numbered tile.

You might start here if you’d like to do some additional reading on the n-puzzle:
http://en.wikipedia.org/wiki/Fifteen puzzle

Armed with this information you can now begin your own implementation of the n-puzzle game!

Specification.

[0 By the project’s deadline, you'll create an implementation of the n-puzzle game as a native
Android app. As always, your application must meet some requirements that we’ve specified
below, but its overall design and aesthetics are left up to you. Other unspecified details are left to
your own creativity and interpretation.

Features.

[0 The game must have three levels of difficulty: “easy”, “medium”, and “hard”. The “easy”
level indicates that n=8 (in other words, a 3x3 puzzle), “medium” represents n=15 or 4x4,
and “hard” means n=24 or 5x5. The default difficulty should be “medium”.

| Upon opening the application, users must be presented with a list of images included with
the application, any one of which will serve as the basis for the n-puzzle.

2http://www.jstor.org/stable/2369492

40f4

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

Once the user selects the image, a new activity should appear and display a preview of the
solved puzzle using the selected image. That image should be displayed as large as possible
on the screen without distorting its aspect ratio and broken up into n cropped and equally-
sized tiles and displayed with a noticeable border surrounding each. The lowest, right most
tile must be blank. To be clear, there should be n total tiles in yn+I columns of tiles and /n+1
rows of tiles. The quantity n depends on the selected difficulty.

After three seconds the solution should disappear and, in the same activity, the n-puzzle
should appear in its place. The puzzle must be made up of the same n cropped and equally-
sized tiles that appeared briefly, but one of the tiles must remain blank so that the user can
perform valid moves. There should again be a noticeable border around each tile so that no
two tiles appear to be merged. The n-puzzle must be shuffled and must be solvable with
valid moves. For simplicity, it’s fine if the puzzle’s pieces are simply in reverse order as
described above. At no time should the puzzle or its pieces change aspect ratio, but the
puzzle itself must still remain as large on the screen as possible.

To play, a user must be able to tap (or, if using an emulator, click) a tile immediately
adjacent (directly on top, to the left, to the right, or below) to the empty space to swap that
tile with that empty space. Any other taps or clicks on the puzzle itself must be ignored and
should not result in a move.

During game play, the user should be allowed to hit the MENU button on the Android
device (or emulator) to cause a menu to appear and allow the user to reset the puzzle to a
shuffled state, change the difficulty, or quit the current game and pick another image. This
menu should only appear during game play and not during an image selection.

If the user changes the difficulty level it must cause game play to restart. The solution
preview must appear and be replaced by the shuffled n-puzzle after three seconds, as
above. Additionally, the user’s preference for difficulty level must be remembered by the
app so that the same difficulty is used automatically the next time the game is played. The
preference should survive if the user quits and re-opens the app. If no preference is set, the
default difficulty should be used.

The game’s state must also survive if the user quits the app or other activities appear above
it. The end result should be that a user can return to the game and continue playing where
they left off even if the app is quit or the device is turned off. Don’t forget to save such
things as the image selection, difficulty, number of moves taken so far, and current tile
positions!

When the user has successfully solved the puzzle, a new activity must appear that
congratulates the user on their accomplishment, displays the original image, and lists the
number of moves they used while solving it. There must also be a button to return back to
the list of images and allow the user to play another game.

50of 5

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

Optional Features.

You may also implement one or more of the following additional features. You may safely ignore
these if you’'d prefer, as you will not have points deducted for not including these. Implementing
any will not result in any extra credit. They’re simply here for the fun and challenge!

O

Ensure that the tiles are arranged pseudorandomly at every shuffle (such as when the game
is started or reset) while retaining the puzzle’s ability to be solved.? This must work for all
difficulty levels.

Allow users to specify a puzzle solution image at runtime via a URL. If the URL is a valid JPG
image, the application must download it, store it locally, and add it to the list of images. If
the URL is incorrect or the JPG cannot be interpreted the user must be notified.

Implement a solver that allows a user, by clicking on a new menu option, to watch your app
solve the presented puzzle.” The solution need not be optimal.

Implementation Details.

OO

The application should be targeted for API level 3 and later.

You must include at least 3 images of your choosing in the res/drawable folder that can
be selected as puzzle solutions. The file names must be puzzle N.jpg, where N increases
sequentially from 0 for every additional file. Keep in mind that we reserve the right to swap
out these images or add additional ones (up to a maximum of 10) during testing, so be sure
that your tiles are generated on-the-fly by your app and not pre-generated by you and that
the quantity of images and sizes of each are not hard-coded.

Per the features list you should have three activities in this application. The initial list activity
should be called ImageSelection, the activity where game play occurs should be called
GamePlay, and the congratulatory activity called YouwWin. The . java files should be named
accordingly. You may include other . java files if you deem it necessary to implement other
classes for your game.

Under no circumstances should we be able to cause your program to crash at runtime.

Be sure the project and application name are both nPuzzle#######4#, where ######## is
your 8-digit Harvard ID (HUID), the same credential that you use to log into
help.cs76.net.

Your project’s package name should be: net.cs76.projects.nPuzzle########

3 This might help, if you decide to implement the feature: http://cseweb.ucsd. edu/~ccalabro/essays/15 puzzle.pdf

4 As a hint, read up on the A* search algorithm: http://en.wikipedia.org/wiki/A* search algorithm

6 of 6

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

How to Submit.

O

Before the project’s due date, export your project in Eclipse for submission. Open Eclipse and click
the File menu and then Export. In the window that appears, click on the triangle next to the
General section so that you can see the options contained within. Select Archive File and click the
Next button. On the next window, check the box directly to the left of your project you’d like to
submit. Be sure no others are selected, or you will export those as well. Click on the Browse
button to select a location you’d like to export the ZIP file and be sure to name it ########.zip,
where ######## is your 8-digit Harvard ID (HUID), the same credential that you use to log into
help.cs76.net.

After selecting where the ZIP file will be placed, make sure the export options are correct. Notably
that you are saving as a ZIP file (and not tar), that a directory structure is created for files, and that
the contents are compressed. When ready, click Finish to export your app.

Then head to https://www.cs76.net/submit, click the login link at top-right, click the link to
your TF’s dropboxes at top-left, click this project’s own folder, click Upload File, and upload your
ZIP file as prompted; no need to give it a title. Be sure not to click the wrong project’s folder. You
may re-submit in this same manner as many times as you’d like. Just take care to delete any prior
submissions.

Be sure not to submit or re-submit after this project’s deadline.

70of7

