Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

HTMLS5: Staff’s Choice

Mobile Local

due by noon ET on Thu 2/17

Ingredients.

i HTML5

o JavaScript

i JSON

i JSONP

i localStorage
i navigator.geolocation
° RSS

i XML

i YQL

Help.

Help is available throughout the week at http://help.cs76.net/! We'll do our best to respond
within 24 hours. Be sure, though, to take advantage of lectures and sections as well as videos thereof!

10f8

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

Academic Honesty

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed by some project. Viewing, requesting, or copying another individual’s
work or lifting material from a book, magazine, website, or other source—even in part—and presenting
it as your own constitutes academic dishonesty, as does showing or giving your work, even in part, to
another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to this
course that you have submitted or will submit to another. Nor may you provide or make available your
or other students’ solutions to projects to individuals who take or may take this course (or CSCI S-76) in
the future.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. You may also turn to the Web
for instruction beyond the course’s lectures and sections, for references, and for solutions to technical
difficulties, but not for outright solutions to problems on projects. However, failure to cite (as with
comments) the origin of any code or technique that you do discover outside of the course’s lectures and
sections (even while respecting these constraints) and then integrate into your own work may be
considered academic dishonesty.

If in doubt as to the appropriateness of some discussion or action, contact the staff.

All forms of academic dishonesty are dealt with harshly.

Grades.
Your work on this problem set will be evaluated along three primary axes.
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

20f8

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

Getting Started.

O

Let’s first dive into HTML5 by having you curl up with a free book. Spend some time with
http://diveintohtml5.org/. You should find that it'’s an easy read and provides a nice
overview of HTML5. Rest assured that you won’t need to leverage all of HTML5's features for this
or future projects, so it’s probably okay to skim any sections that don’t really interest you!

Next curl up with another free book, this one at http://ofps.oreilly.com/titles/9780596805784/ .
(Agreed, the first book had a cooler URL.) This book focuses rather specifically on building web
apps for iPhones, but you should find that its lessons apply to most any Webkit-based browser.
This book, too, is worth reading (or skimming!) in its entirety, but, at a minimum, read chapters 1
through 5.

If new to JavaScript, you might also like to read over
https://developer.mozilla.org/en/JavaScript/Guide.

For this project and others, it’s ideal to install on your desktop or laptop the latest versions of:

[0 Google Chrome from http://www.google.com/chrome, if you run Linux, Mac OS, or
Windows.

0 Safari from http://www.apple.com/safari/, if you run Mac OS or Windows. Once
installed, select Safari > Preferences... (in Mac OS) or Edit > Preferences... (in Windows),
then click Advanced, check Show Develop menu in menu bar, then close the Advanced
window.

O Xcode and iOS SDK from http://developer.apple.com/devcenter/ios/index.action,
the latter of which comes with iOS Simulator, if you run Mac OS.

No need to install the Android SDK (and emulator) just yet, as it’s a bit more involved. And no
worries if you don’t yet have (access to) a Mac. Installing at least one of Google Chrome and
Safari suffices for this project; it’s just nice to have iOS Simulator and/or Opera Mobile emulator
for testing as well.

Be sure, though, that your project indeed renders and behaves properly in a Webkit-based
browser before you submit.

For this project, it suffices to develop your web app locally (on your own hard drive), viewing and
testing it locally as well (whether with a browser, emulator, or simulator). However, you (and
your friends!) might enjoy accessing your work on an actual phone, in which case you need to
make it available on your LAN or the Internet at large via HTTP. To do so, you have a few options:

O If you already have (access to) a webserver, you’re welcome to upload your app (as with
SFTP) to that webserver in order to try out your app on an actual phone. Odds are you
already know how to do so!

O If you would like to host your app on one of Harvard’s webservers, create an FAS account (if
you haven’t one already) at https://idm.fas.harvard.edu/new. You'll need to know
your Harvard ID (HUID) at PIN, the same credentials that you use to log into the course’s
own website. Once you have an FAS account (i.e., username and password), you can SSH or

30f8

RSS.

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

SFTP to nice.fas.harvard.edu, create a directory called public html in your home
directory, chmod it and your home directory 711, upload your files to public html, chmod
all of them 644, then visit your app at http://www.people. fas.harvard.edu/~username/,
where username is your own username.

O If you would like run a webserver on your own computer, making your app accessible via
HTTP on your own LAN (but not the Internet at large), first install VirtualBox from
http://www.virtualbox.org/wiki/Downloads. Then download LAMP Stack
Appliance from http://www.turnkeylinux.org/lamp, specifically by clicking OVF to
the right of DOWNLOAD. Once the appliance is downloaded (and unzipped), launch
VirtualBox, select File > Import Appliance..., click Choose..., navigate your way to the .ovf
file in the unzipped folder, click Open, click Continue, then click Done. Once imported, the
appliance should appear as vm in VirtualBox’s lefthand menu; double-click vm, and the
appliance should boot. When prompted, choose passwords for the appliance’s root
(i.e., administrative) and MySQL accounts. (It’s fine if they’re the same.) Thereafter, you
should see a list of URLs that reveal the appliance’s IP address on your LAN (assuming your
LAN offers DHCP). Visit http://w.x.y.z/ with your own computer’s browser, where
w.x.y.z is the IP address that you see, and you should see a webpage whose title is
Turnkey LAMP. If you SSH or SFTP to that same IP address as root, you can place your app
within a subdirectory of /var/www/ (so long as you chmod the subdirectory 711) in order
to view it at a URL like http://w.x.y.z/subdirectory/. If your own phone supports
Wi-Fi and has an IP address on your own LAN, you should be able to access your app on your
phone via that same URL.

If unfamiliar with XML, head to http://en.wikipedia.org/wiki/XML to read up on the
subject!

If unfamiliar with RSS, head to http://en.wikipedia.org/wiki/RSS to read up on that
subject as well!

It turns out that many sites syndicate news via RSS, including Google News. In fact, head to
http://news.google.com/, then click Advanced news search toward the top of the page.
Input a zip code (e.g., 02138) to the right of Location (not Source Location), click Search, and you
should find yourself at a URL like the below.

http://news.google.com/news/search?pz=1l&cf=all&ned=us&hl=en&as g=location
$3A02138&as_epg=&as_og=&as_eg=&as_scoring=ré&btnG=Searché&as drrb=qg&as gdr=
a&as minm=1l&as mind=3&as maxm=2&as maxd=2&as nsrc=&as nloc=&geo=02138&as
author=&as_ occt=any

4 0of 8

Yal.

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

Sandwiched inside of that mess is an HTTP parameter called geo, the value of which is the zip
code you typed, per our boldfacing. (Also in there is a parameter called as g, whose value also
includes that zip code, but it suffices to focus only on geo.) Let’s prune every parameter save geo
to get this much simpler URL:

http://news.google.com/news/search?geo=02138

Go ahead and visit the simpler URL with your browser; you should essentially see the same results
as before. Now scroll down to that page’s bottom, and you should see an RSS link. Click it, and
you should find yourself at a URL like the below (though, depending on your browser, yours might
begin with feed:// instead of http://).

http://news.google.com/news?pz=1l&cf=allsned=usshl=en&geo=02138scf=all&output=rss

Notice, again, that the zip code you typed appears in this URL, per our boldfacing. The implication
is that we can request news for any city we’d like by constructing URLs like these, without using
Google’s own form. In the interests of clarity, we can simplify this URL also to just the below.

http://news.google.com/news?geo=02138&output=rss

Realize that you don’t have to type zip codes. Return to Advanced news search and this time
submit a city and state (e.g., Cambridge, MA). You should find yourself at a URL like

http://news.google.com/news/search?pz=1l&cf=all&ned=us&hl=en&as g=&as_epg=
&as_og=&as_eg=&as_scoring=ré&btnG=Searchéas drrb=qg&as gdr=a&as minm=l&as m
ind=3&as maxm=2&as maxd=2&as nsrc=&as nloc=&geo=Cambridge%2C+MA&as author
=&as_occt=any

which can be simplified to
http://news.google.com/news/search?geo=Cambridge%2C+MA

as before. Notice, incidentally, that if your input contains punctuation or whitespace, it may be
encoded, per http://en.wikipedia.org/wiki/Percent-encoding

Neat, eh? Keep this trick in mind as we proceed.

If unfamiliar with browsers’ same-origin policies, head to
http://en.wikipedia.org/wiki/Same origin policy to read up on those. If unfamiliar
with JSON or JSONP, head to http://en.wikipedia.org/wiki/JSON to read up on those
subjects as well. In a nutshell, JSONP enables you to integrate data from one domain into a DOM
whose HTML was served up by another domain.

If unfamiliar with Yahoo! Query Language (YQL), head to http://developer.yahoo.com/yql/
to read up on that subject too. In a nutshell, YQL allows you to retrieve data from Yahoo and

50f8

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

webservers more generally in machine-readable formats, namely XML and JSON. In fact, head to
YQL's console at http://developer.yahoo.com/ygl/console/, replace

show tables

under YOUR YQL STATEMENT with

select * from rss where url = 'http://news.google.com/news?geo=02138&output=rss'

and then click TEST. After retrieving that URL, Yahoo will present the items within in its own XML
format. Hm, that doesn’t feel like much progress, since RSS is already XML. Let’s do one better:
this time around, select JSON instead of XML (the default) to the left of TEST, then click TEST once
more. Yahoo will now present that same news as JSON, padded by a callback function called
cbfunc by default. In other words, it appears that you can convert RSS to JSONP via this YQL
service. In fact, you don’t need the console at all. Notice that, beneath THE REST QUERY, is a
long URL like the below.

http://query.yahooapis.com/vl/public/ygl?g=select%$20*%20from%20rss%20wher
e%$20url%20%3D%20'http%3A%2F%2Fnews.google.com%2Fnews%3Fgeo%3D02138%260utp
ut%3Drss'&format=json&callback=cbfunc

Encoded within that URL is the query you typed. If you visit that URL in a browser, you should see
the raw JSONP, without the console’s GUI around it. Bit of a mess, eh? That’s because, to save
bytes, the service only pretty-prints its output with indentation and whitespace when you’re using
the console.

Interesting, eh?

Geocoding.

O

Whereas geolocating involves finding a real-world object’s geographic coordinates, geocoding
involves converting a string (e.g., a zip code or city and state) to geographic coordinates. Exactly
where in the world is a place like Cambridge, MA? The Google Geocoding APl knows! If
unfamiliar, read up on the service at http://code.google.com/apis/maps/documentation/geocoding/.
Notice that the API can return answers to you as XML or JSON (though not JSONP). And the API
can also reverse-geocode, in case you have some coordinates and want to find out the
corresponding zip code or city and state.

Also interesting, eh? So many interesting (and free!) services out there...

6 of 8

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

Specification.

O

Your mission for this project is to implement Mobile Local, a mobile web app with which users can
check local news and weather. The overall design and aesthetics of this app are ultimately up to
you, but we require that your app meet some requirements. All other details are left to your own
creativity and interpretation.

Features.

O

O

Your app’s Ul should be designed for a smartphone whose width is defined by
device-width; its actual resolution might be anywhere from 320x480 to 760x1280.

Your app must present users with an HTML form into which they can input a zip code or a
city and state. Upon submitting that form, users should be shown a weather forecast for
that locale as well as a list of links to recent news articles about that locale. For each link, it
suffices to display the article’s title, though you may also include its description or a portion
thereof. Exactly how many links to show is up to you to decide.

Your app must provide users with a button or link via which they can provide a locale via
geolocation so that they can see weather and news for their current location without typing
anything.

Your app must remind users of their most recent searches, if any, by way of a list of clickable
buttons or links so that they can re-check some locale’s weather and news with a single
touch. Exactly how many searches to show is up to you to decide.

Implementation Details.

O

o 0O O oOoOo

od

od

The entry point to your app should be a file called index.html. Code that you write may
live within that file or external JavaScript and/or CSS files.

You must use Google News for your news.

You must use YQL to convert RSS from Google News to JSONP.

You must use the Google Geocoding APl as needed to convert geographic coordinates to zip
codes or cities and states.

We leave it to you to find a weather service whose data you can integrate into your app.
You are welcome to discuss options with classmates.

You may not embed weather and news in your app via iframes: you must integrate services’
data into your app’s own DOM.

Your app must depend only on third-party services, not on any server-side scripts of your
own. Any code that you yourself write must be client-side JavaScript. Accordingly, you must
intercept submissions of your app’s form and handle user’s input with Ajax.

You must use localStorage to store users’ recent locales.

You are encouraged, but not required, to integrate jQuery into your app, particularly since it
facilitates use of JSONP, per http://api.jquery.com/jQuery.getJSON/. You are
encouraged, but not required, to integrate jQuery Mobile, jQTouch, or Sencha Touch into
your app. Use of any other JavaScript libraries must be approved by your TF.

Your HTML must be valid HTML5, per http://validator.w3.org/.

Your CSS and JavaScript must not be minified.

7 of 8

Building Mobile Applications CSCI E-76
Harvard Extension School Spring 2011

O Under no circumstances should we be able to trigger runtime errors in your JavaScript code.
Be sure that you handle unwanted inputs and HTTP failures elegantly, as by reporting such
errors or silently handling. Under no circumstances should your code trigger errors in
Webkit’s own console.

How to Submit.

O

First create a ZIP file containing all of your code (and any libraries you downloaded on which it
depends) named #####4###.z1ip, where #####44# is your 8-digit Harvard ID (HUID), the same
credential that you use to log into help.cs76.net. Be sure that any paths in your code are
relative, so that, when unzipped, we can access your app simply by opening index.html on any
computer.

Then head to https://www.cs76.net/submit, click the login link at top-right, click the link to
your TF’s dropboxes at top-left, click this project’s own folder, click Upload File, and upload your
ZIP file as prompted; no need to give it a title. Be sure not to click the wrong project’s folder. You
may re-submit in this same manner as many times as you’d like. Just take care to delete any prior
submissions.

Be sure not to submit or re-submit after this project’s deadline.

8 of 8

