
iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

iOS: Objective-C

Tommy MacWilliam

Harvard University

March 22, 2011

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Announcements

I Lectures: http://cs76.net/Lectures
I Sections: http://cs76.net/Sections
I n-Puzzle feedback this week

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Today

I XCode + GDB
I Data types
I Classes and objects
I Foundation collections
I Designing a Class

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

XCode

I download from the Mac App Store, $4.99
I :(

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

XCode

I view project information in navigator view
I project: files
I symbol: classes and methods
I search: search classes, methods, and implementations
I issue: compilation errors and warning
I debug: debug information
I breakpoint: view/remove breakpoints
I log: build/run list

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Getting Help

I installing documentation: XCode → Preferences →
Documentation → Check and install now

I view all documentation: Organizer (in the top right) →
Documentation

I view documentation for class/method: option-click

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Debugging

I GDB built into XCode
I print object information: po <object>

I create breakpoint by clicking on line number
I in the console: b function or b line

I list breakpoints with info b

I delete nth breakpoint with delete <n>

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Debugging

I at breakpoint, go to next line
I next (execute any called function)
I step (go into any called function)

I at breakpoint, continue to next breakpoint: continue

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

The Language

I strict superset of C
I any C program is also an Objective-C program

I major implementations: Clang (with LLVM) and GCC
I not just for OS X! see: GNUstep

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Primitives

I int: integers like 1, -2, 123

I float: floating point decimals like 1.0f, 3.14f,
-5.f

I double: larger-capacity floats
I char: single character like ’a’,’Z’, ’8’

I id: object of any type

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Strings

I not a primitive type (just like in Java)
I implemented by NSString
I strings defined via @”the string”

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Formatting

I NSLog is the new Log.i or console.log
I special characters in NSLog string can be replaced with

values
I int: %d
I float: %f
I char: %c
I NSObject: %@

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Interface

I declares class instance variables and methods
I .h file

@interface <class> : <parent> {
<type> <ivar name>;

}
- (<type>) <method name>;
@end

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Implementation

I defines class methods
I .m file

@implementation <class>
- (<type>) <method name> {

// implementation goes here
}
@end

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Properties

I getters and setters are necessary to access class
member variables

I getter

- (int) bar { return bar; }

I setter

- (void) setBar:(int)newBar {
bar = newBar;

}

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Properties

I starting with Objective-C 2.0, getters/setters can be
generated for you

I interface: @property (attributes) <property
name>

I implementation: @synthesize <property name>

I foo.bar = 4;

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Property Attributes

I nonatomic: unsynchronized, but faster access
I readonly: only getter generated
I readwrite: both getter/setted generated (default)

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Method Arguments

I no arguments:

- (void) foo

I single argument:

- (void) foo:(int)bar

I multiple arguments:

- (void) foo:(int)bar baz:(int)qux

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Calling Methods

I message-passing used to “call” methods
I message sent to object, and object responds to

message

I message receiver resolved at runtime
I no type-checking at compile time
I object may not respond to message!

I [object method:argument another:value];

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Instantiating Classes

I alloc: reserve memory for object (like malloc in C)
I init: set up the created object (like a constructor in

Java)
I initialize attributes via custom
initWith<Something>: methods

I both return pointers to objects

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Memory Management

I no automatic garbage collection :(
I reference counting

I alloc or retain: count++
I release: count--

I dealloc called when the reference count is 0
I release object’s fields

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

More Property Attributes

I assign: nothing extra, just assignment
I retain: retain sent to new value, release to

previous value
I copy: new object is allocated via copy messaged (old

value released)

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Using Other Classes

I interfaces and implementations need to know about
other classes

I interface: @class <class>

I forward class declaration: tells compiler <class> exists

I implementation: #import “<class>.h”

I like #include: uses interface to tell compiler what
<class> looks like

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

NSString

I initWithString: create a new NSString object
from @“string”

I length: number of characters in the string
I subStringFromIndex, substringToIndex: get a

substring from a string
I isEqualToString: compare strings
I stringByReplacingOccurrencesOfString:

replace substring with another string
I told you Apple liked long method names

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

NSMutableArray

I initWithObjects: create an NSMutableArray
from a comma-separated list of objects

I count: number of elements in the array
I containsObject: whether or not an object is in the

array
I indexOfObject: index of given object in array
I objectAtIndex: object at given index in array
I addObject, removeObject: add/remove an object

from the array

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

NSMutableDictionary

I initWithObjects: create an
NSMutableDictionary from a list of keys and values

I count: number of elements in the dictionary
I objectForKey: get value associated with key
I allKeys, allValues: get an NSArray of all

keys/values
I setObject, removeObjectForKey: add/remove

an object from the dictionary

iOS:
Objective-C

Tommy
MacWilliam

XCode

Data Types

Classes and
Objects

Foundation
Collections

Designing a Class

I example time!

	XCode
	Data Types
	Classes and Objects
	Foundation Collections

