Ingredients.

. Objective-C
. Xcode 4

Help.

Building Mobile Applications CSCI S-76
Harvard Summer School 2011

iOS: Setup

Hello, World: iOS Edition

due by Mon 7/27, noon

Help is available throughout the week at http://help.cs76.net/!

within 24 hours!

10of9

We’'ll do our best to respond

Building Mobile Applications CSCI S-76
Harvard Summer School 2011

Academic Honesty

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed by some project. Viewing, requesting, or copying another individual’s
work or lifting material from a book, magazine, website, or other source—even in part—and presenting
it as your own constitutes academic dishonesty, as does showing or giving your work, even in part, to
another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to this
course that you have submitted or will submit to another. Nor may you provide or make available your
or other students’ solutions to projects to individuals who take or may take this course (or CSCI E-76) in
the future.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. You may also turn to the Web
for instruction beyond the course’s lectures and sections, for references, and for solutions to technical
difficulties, but not for outright solutions to problems on projects. However, failure to cite (as with
comments) the origin of any code or technique that you do discover outside of the course’s lectures and
sections (even while respecting these constraints) and then integrate into your own work may be
considered academic dishonesty.

If in doubt as to the appropriateness of some discussion or action, contact the staff.

All forms of academic dishonesty are dealt with harshly. If the course refers some matter to the
Administrative Board and the outcome for some student is disciplinary action, the course reserves the
right to impose local sanctions on top of that outcome for that student that may include, but not be
limited to, a failing grade for work submitted or for the course itself.

Grades.

Your work on this problem set will be evaluated along one primary axis.

Correctness. To what extent is your code consistent with our specifications and free of bugs?

20f9

Building Mobile Applications CSCI S-76
Harvard Summer School 2011

Required Reading.

O

First curl up with Learning Objective-C: A Primer:

http://developer.apple.com/library/mac/referencelibrary/GettingStarted/Learning Objective-C A Primer/
You'll find that it’s a pretty quick read and hopefully whets your appetite for a bit more detail.

It’s time for more detail! Now curl up with The Objective-C Programming Language:

http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html

This one’s a few chapters, so be sure to click through to each by clicking Next in the bottom-right
corner of most every page or by clicking through to each via the Table of Contents in the site’s
top-left corner.

Odds are you won’t retain everything you read. (Pun intended.) But not to worry; it’ll start to
sink in once you get your hands dirty with code of your own.

Next skim Coding Guidelines for Cocoa:
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CodingGuidelines/CodingGuidelines.html
Try to keep those guidelines in mind as you begin to write code of your own. We won’t expect

strict adherence to Apple’s guidelines, so long as your own style is clean and consistent, but might
as well familiarize yourself with some best practices.

Now, for the sake of some review, read through the tutorial at:
http://cocoadevcentral.com/d/learn objectivec/

If still hazy on some of its concepts, refer back to The Objective-C Programming Language as
needed.

Finally, spend some time reading

http://www.otierney.net/objective-c.html

particularly the code therein. Hopefully you’re finding that you’re developing an eye for
Objective-C? If anything confuses, not to worry, reach out to classmates and staff via

help.cs76.net with questions!

Incidentally, this particular tutorial covers Objective-C 1.0, not 2.0, so absent are topics like
properties and fast enumeration.

30f9

Building Mobile Applications CSCI S-76
Harvard Summer School 2011

Register as an Apple Developer.

[Phew, that was a lot of reading. Time to fill out some forms! Head to

http://developer.apple.com/programs/register/

if you’re not already registered as an Apple Developer. Click Get Started when ready, and you
should be prompted to Create an Apple ID or Use an existing Apple ID. Review the explanation
beneath each option, then select the appropriate one and click Continue. Complete your personal
profile on the page that appears, taking care to provide a valid email address, then click Continue.
Complete your professional profile (with regard to your market and such) as you see fit, then click
Continue. You'll then be prompted to agree to the Registered Apple Developer Agreement.
Once you do, you’ll receive a verification code via email. Input that code as prompted, then click
Continue. You should now be registered as an Apple Developer!

If you plan to submit an app to Apple’s App Store, whether during the semester or shortly
thereafter, you might also want to sign up for the iOS Developer Program at

http://developer.apple.com/programs/

which costs $99/year or for the iOS Developer Enterprise Program at

http://developer.apple.com/programs/ios/enterprise/

which costs $299/year. However, know that you do not need to sign up for either program for
this course. Because the course is part of the iOS University Program, you will be able to install
apps that you write on your own iPad, iPhone, or iPod touch this semester for free. You won’t be
able to submit any apps to the App Store, though, unless you sign up for one of the paid programs.
See http://developer.apple.com/programs/which-program/ for more details.

Xcode.

From this point forward in the story, you’ll need to be sure that you’re on an Intel-based Mac running
Mac OS X Snow Leopard version 10.6.6 or higher. To find out whether a particular Mac qualifies, select
About This Mac from the & menu. Hopefully you’ll see Version 10.6.6 (or higher) as well as some
mention of Intel next to Processor. You'll also need at least 15GB of disk space available on your Mac’s
startup volume (e.g., Macintosh HD); to check its available space, highlight the volume in the Finder,
then select Get Info from the Finder’s File menu.

If you don’t own a Mac that meets these requirements and are distant from Cambridge, you will need to
borrow or otherwise procure one. (Afraid these are Apple’s requirements, not ours!) If you don’t own a
Mac that meets these requirements but are local to Cambridge, you’re welcome to use the Mac lab at
53 Church Street in Harvard Square, the hours of which are Ilisted at
http://lab.dce.harvard.edu/; do bring proof of your enrollment in the course (e.g., any
paperwork you received from the school in the mail) in case asked for it by the User Assistants at the
front desk.

4 0f9

Building Mobile Applications CSCI S-76
Harvard Summer School 2011

If, at this very moment, using a Mac at 53 Church Street, where everything’s already installed for you, go
ahead and skip the following two checkboxes. Otherwise it’s time to install Xcode!

O

If you only signed up as an Apple Developer (for free) and neither of the paid programs, and
you’re running Mac OS 10.6.x (i.e., Snow Leopard), visit

https://developer.apple.com/xcode/

to download Xcode 4.0.2 by clicking Xcode 4.0.2 and iOS SDK 4.3. If you’re instead running Mac
0S 10.7 (i.e., Lion), visit

http://itunes.apple.com/us/app/xcode/id448457090?mt=12

and click Free to download Xcode 4.1. Just realize that, because Xcode 4.1 requires Lion (which
was released on Wed 7/20), the course will assume use of Xcode 4.0.2 so that you needn’t
upgrade your OS.

If you did sign up for the iOS Developer Program (for $99/year) or the iOS Developer Enterprise
Program (for $299/year), head to

http://developer.apple.com/xcode/

and click Log in where prompted in order to download Xcode 4.0.2 for free. (Well, “free,” seeing
as you did just pay $99 or $299.) Do not download Xcode 4.2. Proceed to install it once
downloaded.”

No matter how you download Xcode 4, realize that the installer is over 4GB in size, so it might take
some time!

If the installation appears to hang, see

http://discussions.apple.com/thread.jspa?threadID=2777384

for some tips. And if, after installing Xcode 4, you have trouble synching or backing up an iOS
device in iTunes, see

http://support.apple.com/kb/HT1747?viewlocale=en US
for some tips.

Once Xcode 4 is installed, go ahead and launch it. (It can be found on your Mac’s startup volume
in /Developer/Applications/). Proceed to select Preferences... under the Xcode menu (to
the right of the @ menu). Click the Documentation icon atop the window that appears. If you
only see Mac OS X 10.6 Core Library and Xcode 4.0 Developer Library, click Check and Install
Now, thereafter providing your Mac’s password if prompted. You should then see iOS 4.3 Library
(Apple iPhone OS 4.3) in gray; click GET to the right of that library, again providing your Mac’s
password if prompted. (No need to download Mac OS X Legacy Library). After Xcode is done

50f9

Building Mobile Applications CSCI S-76
Harvard Summer School 2011

getting the library, it should re-appear in black. Confirm as much by selecting Xcode Help under
Xcode’s Help menu, then click the eye icon at top-left. You should see iOS 4.3 Library among the
libraries that then appear to the left; click it, and documentation for the entire iOS Developer
Library should appear to the right. Realize, though, that you can access that same documentation
athttp://developer.apple.com/library/ios/.

Hello, World.

O

Alright, it’s time to take Xcode for a spin. Go ahead and launch it, if not running already, and
create a new project, as by clicking Create a new Xcode project in the splash screen that displays
upon launch (if you didn’t disable) or by selecting New > New Project... from Xcode’s File menu.
When prompted to choose a template for your new project, select Application under Mac OS X
(not i0S), select Command Line Tool, then click Next. When prompted for a Product Name, input
MacApp and then select Foundation (not Core Foundation) next to Type. Choose a location for
the project when prompted, then click Create. (Best not to save anything in /Developer, lest
you upgrade Xcode in the future.)

A window entitled MacApp — MacApp.xcodeproj should then appear. Go ahead and expand each
of the triangles at left (except for Foundation.framework), and you should see main.m,
MacApp.1, and MacApp-Prefix.pch among their contents. Click MacApp.1 then hit delete on
your keyboard; when prompted to permanently delete it, click Delete. (That file’s just a template

for a man page” that you won’t need for this project. See
http://en.wikipedia.org/wiki/Man page if curious.)

Now click main.m, and you should see its contents at right. Ha, turns out Xcode already wrote
this program for you! But go ahead and change

@"Hello, World!"

to some other NSString of your choice. Then modify the comments atop the file so that they
contain your full name and your Apple ID (i.e., the email address with which you registered as an
Apple Developer). Henceforth, be sure that main.m always contains at least those details for any
project you write and submit.

Go ahead and click Run in Xcode’s top-left corner (or hit 3-R on your keyboard), and you should
find that Xcode’s Debug area appears at bottom, among whose boldfaced output should be your
NSString! You’ve just compiled and run MacApp . app, your very first app!

There’s nothing wrong with leaving that Debug area open all of the time, but, so that you get a
feel for Xcode’s Ul, go ahead and figure out how to hide it. (Hint: poke around Xcode’s top-right
corner.) In fact, poke around the rest of Xcode’s Ul, including its menu, to get a sense of its
features. (If you start to feel a bit overwhelmed, simply close whatever you opened!) The
interface is a bit complex, at least when you have everything showing, but not to worry, we'll
point out its features as needed.

6 0f9

Building Mobile Applications CSCI S-76
Harvard Summer School 2011

Okay, that first app isn’t going to impress any of your friends. Let’s try a bit harder.

Create a new project in Xcode. (Remember how?) When prompted to choose a template for your
new project, select Application under iOS (not Mac OS X), select Window-based Application, then
click Next. (A Window-based Application is the simplest of the templates provided; we’ll see
some others before long.) Input iPhoneApp next to Product Name, input edu.harvard.dce next to
Company Identifier, select iPhone next to Device Family, and leave both Use Core Data and
Include Unit Tests unchecked. Then click Next. Choose a location for the project when prompted,
then click Create.

A window entitled iPhoneApp — iPhoneApp.xcodeproj should then appear. As before, go ahead
and expand each of the triangles at left (except for UIKit.framework, Foundation.framework, and
CoreGraphics.framework), and you should see more files than last time.

Go ahead and click main.m, and its contents should appear to the right. As before, it’s that file
that will kick off this program. Notice that it calls UTApplicationMain. Hold down option on
your keyboard, click the name of that function, and some documentation thereof should appear in
a callout. (If you'd like even more detail, click the little book icon in that callout’s top-right corner,
and the entire UIKit Framework’s documentation will appear inside of Organizer.) Apparently,
UIApplicationMain creates “the application object and the application delegate.” Hm, now
where (if not what) are those...

Go ahead and click MainWindow. xib, and Xcode’s “interface builder” should appear to the right.
Odds are, to the left the “graph paper” you see, there’ll be four icons (three cubes and one
square). Down below those icons should be a small arrow within a rectangle; click the arrow to
widen the icons’ area. You should now see names next to those icons. Click File’s Owner under
Placeholders. Then, if it's not open already, open Xcode’s Utilities by clicking the rightmost icon
above View in Xcode’s top-right corner. Below View are six smaller icons; click the third from the
left to reveal Xcode’s Identity inspector. (Incidentally, if at any point unsure what some icon
means, hover over it with your cursor for a moment, and a tooltip should appear.) Assuming
File’s Owner is still highlighted, you should see that its class is UTApplication. Aha! Here's the
“application” that UTApplicationMain promised to create.

Now click the rightmost icon beneath View to reveal Xcode’s Connections inspector. Assuming
File’s Owner is still highlighted, you should see that your application’s delegate is | Phone App
App Delegate. (You might need to make the Utilities area wider to see all of those words.)
Alright, now where is this supposed delegate?

Oh! Click I Phone App App Delegate under Objects, which itself is below Placeholders. Assuming
you still have the Connections inspector revealed, you should that this delegate’s window is
Window (which itself is of type UIWindow, which just so happens to be a subclass of UIView). In
other words, your delegate’s default view is the iPhone’s window itself.

Now what exactly is an | Phone App App Delegate? Well, assuming you still have it highlighted,

reveal the Identity inspector again. (Remember how?) You should see that
| Phone App App Delegate is of type iPhoneAppAppDelegate. (And therein lies the origin of

7 of9

Building Mobile Applications CSCI S-76
Harvard Summer School 2011

that object’s name; Xcode has simply inserted spaces before any capitalized letters so that the
object’s name is, er, more readable.)

Feels like a quick recap might be in order: main.m calls UIApplicationMain, which creates an
application (i.e., UTApplication) object as per MainWindow.xib. That application object,
meanwhile, has delegated control of the app to an object of type iPhoneAppAppDelegate.
Because that delegate is wired to the iPhone’s window (i.e., UTWindow), it will have control of the
screen.

So what is an iPhoneAppAppDelegate object exactly? Well, go ahead and click
iPhoneAppAppDelegate.h. Interesting, not all that much there, but notice that it does have an
“outlet” for a UIWindow (as we saw in MainWindow.xib). And it also conforms to the
UIApplicationDelegate protocol, which is good, since that means a UIApplication object
can delegate to it control of the app.

Now click i PhoneAppAppDelegate.m. Whoa, lots of instance methods defined in this one (most
of which are declared in the UIApplicationDelegate protocol). But the most important one is
probably application:didFinishLaunchingWithOptions:, since that one will be called
first so that the app’s UIWindow is made visible for the user to see.

Let’s ensure that the user has something interesting to look at. Go ahead and click
MainWindow.xib again, and open Xcode’s Utilities, if not still open from before. Toward that
area’s bottom should be a library of Objects, the first of which is Label. (If not, you can select
Utilities > Object Library under Xcode’s View menu.) Drag a Label from that area to the center of
the iPhone window depicted in Xcode’s middle, atop the graph paper. (If you see no window, try
clicking Window under Objects at left to make it appear.) Crosshairs should appear once you’ve
aligned the Label perfectly. Assuming the Label is selected (as indicated by a rectangle of six dots
around it), select the Attributes inspector among Xcode’s Utilities at right. (We’ll leave it to you
to find that one.) Then specify some Text, a Font, and a Text Color (as well as any other attributes
that you’d like) for your Label. Any changes you make should appear in the graph paper’s
window.

Once pleased with your Label, ensure that iPhoneApp | iPhone 4.3 Simulator is selected in the
drop-down to the right of the Run button in Xcode’s top-left corner. Then click Run (or hit 8-R on
your keyboard). If all goes well, the iOS Simulator should launch with your app! If not, try to
retrace your steps to determine what might have gone wrong. (Worst case, perhaps start over
from the beginning!)

Incidentally, even though you didn’t need to modify main.m this time, do remember to put your
full name and your Apple ID atop the comments that file so that we know who you are.

What about those other files among this project’'s Supporting Files? Well, in
iPhoneApp-Info.plist and InfoPlist.strings are some (default) properties for your app.
In iPhoneApp-Prefix.pch are some (soon-to-be precompiled) headers that will be prepended
to each of your source files. As for iPhoneApp.app under Products, that’s your app. Or, at least,

8 0of 9

Building Mobile Applications CSCI S-76
Harvard Summer School 2011

it will be if you build your code for an actual device (which you don’t need to yet); for now, it’s
probably red, which means you’ve only built your app for the iOS Simulator.

Phew, nicely done!

How to Submit.

To be announced via email prior to this project’s deadline.

90of9

