10S: Objective-C Primer

Jp LaFond
Jp.LaFond+e76@gmail.com
TFE, CS76



mailto:Jp.LaFond+e76@gmail.com
mailto:Jp.LaFond+e76@gmail.com

Announcements

e n-Puzzle feedback this week (if not already
returned)

e iOS Setup project released

e Android Student Choice project due

Sunday, March 18, 12



Tonight

e XCode and GDB

e Objective-C Primitive Data Types

* Objective-C Classes and Objects

e Objective-C Foundation Collections

e Objective-C Designing a Class

Sunday, March 18, 12



XCode

e Download from the Mac App Store

e http://itunes.apple.com/us/app/xcode/

IIIIII

Sunday, March 18, 12


http://itunes.apple.com/us/app/xcode/id497799835?mt=12
http://itunes.apple.com/us/app/xcode/id497799835?mt=12
http://itunes.apple.com/us/app/xcode/id497799835?mt=12
http://itunes.apple.com/us/app/xcode/id497799835?mt=12

XCode

e View project information in navigator view
e project: files
e symbol: classes and methods
e search: search classes, methods, and implementations
e issues: compilation errors and warnings
e debug: debug information
e breakpoint: view/remove breakpoints

e log: build/run list

Sunday, March 18, 12



Help and Simulators

* Installing documentation:
XCode — Preferences — Downloads —
Documentation — Check and Install Now

e Viewing all documentation:
Organizer (Windows — Documentation)

e View documentation by class/method:
option/click

Sunday, March 18, 12



Debugging

e (DB built into XCode

* print object: po <object>

e create breakpoint by clicking on line number

e or in the console: b functionorb line
e list breakpoints with: info b

e delete nth breakpoint with: delete <n>

Sunday, March 18, 12



Debugging

o At breakpoint, go to the next line

e next (execute any called function)
e step (go into any called function)
e At breakpoint, continue to the next

breakpoint:
continue

Sunday, March 18, 12



Objective-C: The Language

e Strict superset of C

e Any C program is also an Objective-C
program

e Major implementations: Clang (with LLVM)
and GCC

e These are changed in the Build Settings

Sunday, March 18, 12



Primitive Data lypes

e int: integers like -17, 26, 341

e float: floating point decimals like 1.07,
3.14f," -7F

e double: larger-capacity floats
e char: single character like €1°, €3°, ‘p’
e id: object of any type

e nil: any empty id

Sunday, March 18, 12



Strings

e not a primitive type (just like Android’s String)

e implemented by NSString

e strings are defined as @“a string constant”

Sunday, March 18, 12



LLogging

e NSLog is the equivalent of Android’s Log.d or
console. log

e Special characters in the NSLog string can be
replaced with values:

e 1nt: %d
o float: %f
e char: xcC

e NSObject: %@

Sunday, March 18, 12



Interface

e declares class instance variables and methods

e .hfile
@interface <class> : <parent>

- (<type>) <method name>;
@end

Sunday, March 18, 12



Implementation

e defines class methods

e .mfile

/| optional private interface extension
@implementation <class>

- (<type>) <method name> {
// 1mplementation goes here

¥
@end

Sunday, March 18, 12



Properties

® ogctters/setters to access class member variables

¢ getter
- (int) variableName { return variableName; }

® setter
- (void) setVariableName: (int)NewVariable {

variableName = newVariable;

¥

Sunday, March 18, 12



Properties

o Starting with Objective-C 2.0, getters/setters
can be generated for you:

e interface:
@property (attributes) <property name>

e implementation:
@synthesize <property name> [= <ivar name>]

e self.variableName = 7;

o [self setVariableName:7];

Sunday, March 18, 12



Property Attributes

nonatomic: unsynchronized, but faster access
readonly: only getter generated

readwrite: both getter/setter generated (default)
assign: nothing extra, just assignment

retain: retain sent to the new value

copy: new object is allocated and the value copied

Sunday, March 18, 12



Method Arguments

® NO arguments:
- (void) method

* single argument:
- (void) method: (int)argument

e multiple arguments:
- (void) method: (int)argument
otherArgument: (int)other

Sunday, March 18, 12



Calling Methods

o All calls are message passing:

e Message sent to object, and object responds
to the message

e Message receiver resolved at runtime:
e No type checking at compile time.

e Object may not respond to the message sent.

e [class method:argument other:value];

Sunday, March 18, 12



Instantiating Classes

e alloc: reserve memory for object (like malloc in C)

e init: set up the created object (like a constructor in

Java)

e initialize attributes via custom
initWith<Something>: methods

e both return pointers to objects

e convenience method: new

Sunday, March 18, 12



Memory Management

e In iOS 5.0, Apple introduced ARC (Automatic
Reference Counting), their answer to garbage
collecting.

e Gone of the days of having to use: retain,
release, autorelease, or to deal with
writing a specific dealloc method, where
you release things.

Sunday, March 18, 12



Using Other Classes

e interfaces and implementations need to know
about other classes

e interface @class <class>

e forward class declaration: tell compiler
<class> exists

e implementation: #import “<class>.h”

o like #include, this uses interface to tell
compiler what <class> looks like

Sunday, March 18, 12



NSString

e initWithString: creates a new NSString object from
@“string constant”

e length: number of characters in the string

e substringFromIndex, substringToIndex: geta
substring from a NSString.

e 1sEqualToString: string comparison

e stringByReplacingOccurrencesOfString: new string
from replacing substring with another string.

Sunday, March 18, 12



NSMutableArray

e initWithObjects: create an
NSMutableArray with a comma-separated list
of objects

e count: number of elements in the array

e containsObject: whether or not an object is

in the array

e indexOfObject: index of given object in array

Sunday, March 18, 12



NSMutableArray

* objectAtIndex: object at given index in array

e addObject, removeObject: add/remove an
object from the array

Sunday, March 18, 12



NSMutableDictionary

e initWithObjects: create an
NSMutableDictionary from a list of keys and
values

e count: number of elements in the dictionary
 objectForKey: get value associated with key

e allKeys, allValues: get an NSArray of all
keys/values.

Sunday, March 18, 12



NSMutableDictionary

e setObject, removeObjectForKey: add/
remove an object from the dictionary

Sunday, March 18, 12



Class Design

e Sample code!




