Lab 2

I0S: Evil Hangman Walkthrough



Evil Hangman

Overview
Equivalence Classes
Setup

Getting Input
Property Lists
Settings



Overview

Goal: Actively try to keep the player from
winning the game.

Strategy: Select the longest list of possible
words after each guess.




Equivalence Classes

e Start with a list of words:
CAT
COT
COW
DOG
DOT
TAG
TOT



Equivalence Classes

* Check the list of words against player’s guess:

* GQuess: T
CAT => --T
COT => --T
COW =>  ---
DOG => ---
DOT => --T
TAG => T--
TOT => T-T

* Possibilities: ---, --T, T--, or T-T



Equivalence Classes

* Pick the largest of the equivalence classes:
--T=> 3 (CAT, COT, DOT)
- => 2 (COW, DOG)
T--=> 1 (TAG)
T-T=> 1 (TOT)



Equivalence Classes

* Repeat with the new list:

* Guess: C

CAT => C-T
COT => C-T
DOT => --T

* Pick the largest equivalence class:
C-T=> 2 (CAT, COT)
T => 1 (DOT)



Equivalence Classes

* Repeat with the new list:

e GQuess: A
CAT => CAT
COT => C-T

* Pick the *best* equivalence class:
COT => 1 (CT)
CAT => 1 (CAT)



Equivalence Classes

That’s great, but how do we actually implement this?



Equivalence Classes

http://en.wikipedia.org/wiki/Equivalence class

The equivalence class of an element a is
denoted [a] and may be defined as the set

a ={r € X |a~a}

of elements that are related to a by ™.




Equivalence Classes

Roughly translated:

* Define a set of words sharing a given letter at
a given location

e Order matters:--T I= T - -



Equivalence Classes

What about in code?

e Xcode has no idea what we’re talking about:

© ' NSEquivalenceClass =xequivalenceClass;



Equivalence Classes

* What are our options?
— NSMutableDictionary
— NSMutableArray
— NSMutableSet



Equivalence Classes

Pseudocode:

for each word in set:
determine equivalence class for word
add word to equivalence class
determine largest equivalence class
remove all other words
update Ul



Equivalence Classes

* Each equivalence class contains a set of words

* Need to keep track of all equivalence classes
— Always pick the largest class
— Break ties in a pseudo-random manner



Equivalence Classes

Considerations:
* Time
— Iterating over lists is slow
— Indexing into arrays and dictionaries is fast
— Loading plists from storage is slow
* Space
— words.plist is pretty big
— Keep your data structures as small as possible
— Don’t keep things in memory longer than needed




Equivalence Classes

* “We should forget about small efficiencies,
say about 97% of the time: premature
optimization is the root of all evil. Yet we
should not pass up our opportunities in that
critical 3%.” — Donald Knuth

(http://en.wikipedia.org/wiki/Donald Knuth)




Equivalence Classes

Summary:

* Leave yourself the most number of options at
each stage.

 |f at all possible, do not let the player win
* If possible, optimize the algorithm further ©



Setup

e Utility Application
— Contains two controllers:

e MainViewController

* FlipsideViewController

— Flipside is often used for configuration / settings

— e.g. Apple Weather App



Setup — Delegates / Protocols

* |dentifies an object to handle an action on
your behalf, rather than handling it yourself

« delegate object implements a protocol

— Guarantees that methods will be implemented



Setup - Protocol

@protocol SomeProtocol
- (void)someMethod;
- (int)calculateSomething: (int);

@end



Setup

DEMO: Utility Application



Getting Input

* Must come from a UITextField

« UITextFieldDelegate provides additional
functionality

* Text field should probably be hidden



Getting Input - UlTextFieldDelegate

* textFieldShouldReturn:
— “Done” button pressed

* textFieldShouldBeginEditing:
— User about to edit text

* textFieldShouldEndEditing:
— Text field about to lose focus



Getting Input

DEMO: UlTextField



Property Lists

* Key/value pairs

e Stored in XML
— Can be edited manually, or with the plist editor

* Frequently used to store settings



Property Lists

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//
EN" http://www.apple.com/DTDs/
PropertyList-1.0.dtd>

<plist version="1.0">
<dict>
<key>KeyName</key>
<string>KeyValue</string>
</dict>
</plist>



Property Lists

 NSDictionary has a method:
initWithContentsOfFile:

— Can also write plist files

« NSBundle has a method:
pathForResource:o0fType:

— Provides access to the filesystem



Property Lists

DEMO: Property Lists



Settings

* NSUserDefaults has useful methods:
— registerDefaults:
— integerForKey:
— setInteger: forKey:
— stringForKey:
— setObject: forKey:



